Factorization Class 8 ICSE

Factorization : 

The process of writing an algebraic expression as the product of two or more expressions is called factorization or the resolution of the given expression into its factors.

Factorisation Of An Expression By Taking Out The Common Factor :

Factorize :

1 . 6xy - 4xz = 2x(3y - 2z)

2. 9bx² + 15b²x = 3bx(3x + 5b)

3. 4a²b - 6ab² + 8ab = 2ab(2a - 3b + 4)

4. 5x² + 15x3 - 20x = 5x (x + 3x² - 4)

5. 2x+ x² - 4x = x (2x² + x - 4)

6. a3b - b² - b3  = b(a3)

7. 28b²c - 42ac² = 14ac(2a - 3c)

8. 15x²y - 6xy² + 9y= 3y(5x² - 2xy + 3y²)

9. 10x²y + 15xy² - 25x²y² = 5xy(2x + 3y - 5xy)

10. 18x²y - 24xyz = 6xy(3x - 4z)

11. 27a3b- 45a4b= 9a3b2(3b -5a)

12. 4(a + b) - 6(a + b)= 2(a + b) (2 - 3(a + b)) = 2(a + b) ( 2 - 3a - 3b)

13. 2a(3x + 5y) - 5b(3x  + 5y) = (2a - 5b) (3x + 5y)

14. 2x (p² + q²) + 4y (p² + q²) = (2x + 4y) (p² + q²)

                                                 2 (x + 2y) (p² + q²)

15. 8 (3a - 2b)² - 10 (3a - 2b) 

       let (3a - 2b) be x

     so, 8x² - 10x = 2x (4x - 5)

                          put value of x

                          = 2(3a - 2b) (4(3a - 2b) -5)

                          = 2(3a - 2b) (12a - 8b -5)

16. x(x +y)3 - 3x²y (x + y) 

      let (x + y) be a

so,

  xa3 - 3x²ya  = xa (a² - 3xy) 

                         put value of a

                       = x(x + y) ((x + y)² -3xy)

                       = x(x + y) (x² + 2xy +y² - 3xy)

                      x(x + y) (x² +y² - xy)

17. a(3x - 2y) + b (2y - 3x)

     = a(3x - 2y) - b (3x - 2y)

     = (a - b) (3x - 2y)

18. a(b - c)² - d(c - d) = a(b -c)² + d(b - c) 

                                       let (b - c) be x

                              so, ax² + dx = x(ax + d)

                                                     put value of x

                                                   = (b - c) (a(b - c) + d)

                                                  = (b - c) (ab -ac + d)

19. a(4a -b) +2b(4a - b) - c(4a - b) = (a + 2b -c) (4a -b)

20. m(mx + ny)² + mn (mx + ny) + n (mx +ny)

            let (mx + ny) be a

so, ma² + mna + na = a(ma + mn + n)

                            put value of a

                                  = (mx + ny) (m(mx + ny) + mn + n)

                                  = (mx + ny) (m²x + mny + mn + n)


Factorization of an expression by grouping the terms : 

Certain algebraic expressions can be factorized by grouping the terms in pairs in such a way that in each pair, the terms have a common factor and when this common factor is taken out, the same expression is left in each pair.







Exercise 

1. 5xy + 20x - 9y -36 = 5xy + 20x - 9y -36 (make groups)

                                   = 5x(y + 4) - 9(y + 4) 

                                   = (y + 4)(5x - 9)

2. 5ab - 10b - 7a + 14 = 5b (a - 2) - 7 (a - 2)

                                    = (a - 2) (5b - 7)

3. 9xy + 7y - 9y2 - 7x = 9xy - 9y+ 7y - 7x

                                   = 9y(x-y) - 7 (x - y)

                                   = (x - y) (9y - 7)

4. 3ax - 6ay - 8by + 4bx = 3a(x - 2y) - 4b(2y - x)

                                        = 3a(x - 2y) + 4b(x - 2y)

                                        = (x - 2y) (3a + 4b)

5. 4x2- 10xy - 6xz + 15yz = 2x(2x - 5y) - 3z(2x - 5y)

                                         = (2x - 5y) (2x - 3z)

6. 3ab - 6bc - 3ax + 6cx = 3b(a - 2c) - 3x(a - 2c)

                                        = (a - 2c)  (3b - 3x) 

                                        = 3(b - x)(a - 2c) 

7. a2+ ab (1 + b) + ba2+ ab + ab2+ b3

                                        = a (a + b) + b2(a + b)

                                        (a + b) ( a +  b2

8. xy+ (x - 1)y - 1 = xy+ xy - y - 1 

                                = xy (y + 1) - 1 (y + 1)

                                = (xy - 1) (y + 1)

9 . b2- ab( 1 - a) - a= b2- ab + a2b - a3

                                     = b(b - a) + a2(b - a)

                                 = (b - a) (b a2)

10. y2- y( 2b + a) + 2ab = y2- 2yb - ya + 2ab

                                      = y (y - 2b) - a (y - 2b)

                                      = (y - 2b) (y - a )

11. x - 2 - ( x - 2)+ ax - 2a = x - 2  - ( x - 2)(x - 2) + a(x - 2)

                                             = (x - 2) [1 -(x - 2) + a]

                                             = (x - 2) ( 1 - x + 2 + a)

                                             = (x - 2) (3 - x + a)

12. x - 1 - ( x - 1)+ 4 - 4x = x - 1 - (x - 1) (x - 1) + 4(1 - x)

                                           = x - 1 - (x - 1) (x - 1) - 4 (x - 1)

                                           = (x - 1) [1 - (x - 1)  -4]

                                           = (x - 1) [1 - x + 1 -4]

                                           = (x - 1) ( -x -2)

                                           = - (x - 1) (x + 2) 

13. b(c - d)2 - a(d - c) + 5c - 5d = b(c - d)+ a(c - d) + 5(c - d )

                                                   = (c - d) [ b(c - d) + a + 5]

                                                   = ( c - d) (bc - bd + a + 5)

14. ab (c2 +d2) - a2cd - b2cd = abc2 + abd2 - a2cd - b2cd

                                                = abc2 - a2cd - b2cd + abd2

                                                = ac ( bc - ad ) - bd ( bc - ad )

                                                = ( bc - ad ) (ac - bd)

15. ab (x2 + y2) + xy (a2 + b2) = abx2+ aby2xya2 + xyb2

                                                       abx2xya2 + aby2+ xyb2

                                                       = ax (bx + ay) + by(ay + bx)

                                                  = (bx + ay)  (ax + by)

16. ab (x+ y2 ) - xy (a2 + b2) = abx2aby2 - xya2- xyb2

                                                       abx2 - xyaaby2- xyb2

                                                       ax(bx - ay) + by( ay - bx)

                                                 = ax(bx - ay) - by(bx - ay)

                                                 = (bx - ay) (ax - by)

17.  a(a + b - c) - bc = a+ ab - ac - bc

                                 = a(a + b) - c(a + b)

                                 = (a + b) ( a - c)








                            

                  

Factorizing the difference of two Squares

The algebraic expressions of the form (a2 - b2)  can be factorized by using the formula 

(a2 - b2)  = (a + b) ( a - b )


 Exercise 14C :

1. x2- 81 = (x2 - 92) = ( x + 9 ) ( x - 9 )


2. 9a2- 25 = (3a)2 - (5)2 = ( 3a + 5 ) ( 3a - 5 )


3. 36y2- 121 = 6y2 - 112) = ( 6y + 11 ) ( 6y - 11 )


4. 49a2- 100b2 = (7a2 - 10b2) = ( 7a + 10b ) ( 7a - 10b )


5. ( a + b )- 36 = [ (a + b )2 - 62] = ( a + b + 6 ) ( a + b - 6 )


6.  16c2- 1 = (4c2 - 12) = ( 4c + 1 ) ( 4c - 1 )


7. 1 - 64b2 = (12 - 8b2) = ( 1 + 8b ) ( 1 - 8b )


8. 9/16 - 25x2 = [(3/4)2 - (5x2)] = ( 3/4 + 5x ) ( 3/4 - 5x )


9.  z2- 1/144 = [(z2 )- (1/12)2) = ( z + 1/12 ) ( z - 1/12 )


10. 1 - (a - b)2 = (12 - (a - b)2) = ( 1 + a -b ) ( 1 - a  + b)


11.  (3m - n)2- (m - 2n)= ((3m - n)2 - (m - 2n)2

= ( 3m - n + m - 2n ) ( 3m - n - m + 2n) 

= ( 4m - 3n ) ( 2m + n )


12. (3x + 2y )2- (2x - 3y)= ((3x + 2y)2 - (2x - 3y)2)

 = (3x + 2y + 2x - 3y ) (3x + 2y -2x + 3y) 
                                                                                    
 = ( 5x - y ) ( x + 5y )


13. 16(a + b)2- 9(a - b)= [(4(a + b))2 - (3(a - b))2

= [(4(a + b) +3(a - b)] [(4(a + b) -3(a - b)] 

= (4a +4b +3a -3b) (4a +4b -3a +3b)

= (7a +b) (a + 7b)


14. 9(x + y)2- 16(x -2y)= (3(x + y))2- (4(x- 2y))2 

[(3(x + y) +4(x- 2y)] [(3(x + y) -4(x- 2y)

= (3x +3y +4x -8y) (3x +3y -4x +8y)
 
= (7x - 5y) (-x + 11y)

= (7x - 5y) ( 11y - x)


15.  36(a - b)2- 25(a + b)= (6(a - b))2- (5(a + b))2 

[(6(a - b) + 5(a + b)] [(6(a - b) - 5(a + b)

= (6a - 6b + 5a + 5b) (6a - 6b - 5a - 5b)
 
= (11a - b) (a - 11b)


16.  9( 3x + 1)2- 4(x - 1)= (3(3x + 1))2- (2(x - 1))2 

[(3(3x + 1) + 2(x - 1)] [(3(3x + 1) - 2(x - 1)

= (9x + 3 + 2x - 2) (9x + 3 - 2x +2)
 
= (11x + 1) (7x + 5)

17.  a- 2ab + b- c2

=  ( a - b ) ( a - b ) - c2

=  ( a - b )- c2

=  ( a - b - c) ( a - b + c)

18. x2 -  a2 - 2a - 1

= x2 - ( a2 + 2a + 1 )

= x2 - (a + 1 ) ( a + 1)

= x2 - ( a + 1 )2 

= ( x + a + 1 ) ( x - a - 1) 

19. a4 -  b4 
= ( a2 +  b2 ) ( a -  b) ( a + b )

20. 16a4 -  81b4

= ( 4a2 +  9b2 ) ( 4a2 -  9b2 ) 

= ( 4a2 +  9b2 ) ( 2a +  3b ( 2a - 3b )

20. 3 - 75 z2
 
=  3 ( 1 - 25 z2 )

= 3 ( 1 + 5z ) ( 1 - 5z)



Ex 2 Using the identity   a2 -  b2  = ( a + b ) ( a - b ), evaluate each of the following

i) 82-  182 

= ( 82 + 18 ) ( 82 - 18 )

= 100 * 64

= 6400

ii) (0.8)-  (0.2)2 

= ( 0.8 + 0.2 ) ( 0.8 - 0.2 )

= 1 * 0.6

= 0.6

iii)

















                                                    


 










No comments

Powered by Blogger.