Angle Sum Property Of Triangle Class 9


Angle sum property of triangle

∠A + ∠B + ∠C = 180° 



Exterior angles of a triangle

Exterior ∠ACD = ∠A + ∠B


Isosceles Triangle

If two sides of a triangle are equal, the angles opposite to them are also equal.

If two angles of a triangle are equal, the sides opposite to them are also equal.de

Altitude

When a perpendicular drawn from a vertex of a triangle to the opposite side, it is called the altitude of the triangle.

Median 

When a line segment drawn from a vertex of a triangle to the mid-point of the opposite side, it is called the median of the triangle.

The three medians of a triangle intersect at centroid in the ratio 2:1.

Exercise :

Q 1) In ∆ABC, ∠A - ∠B = 24° and ∠A - ∠B = 24°. Find ∠A .

Solution :

In ∆ABC,

∠A - ∠B = 24°

∠A = ∠B + 24°  --------(i)

∠B - ∠C = 30°

∴ ∠C = ∠B - 30°----------(ii)

We know that,

∠A + ∠B + ∠C = 180° 

∴ ∠B + 24° ∠B + ∠B - 30° = 180°-----------using (i) and (ii)

∴ 3∠B - 6° = 180°

      3∠B =  180° + 6°

         ∠B = 186/3 = 62°

∠A = ∠B e+ 24°

∠A = 62° + 24° = 86°

Q 2) In the given figure, AB = BC = CD = AC and AD = DE.  Find ∠BAE.

Solution :

In the given figure, AB = BC = CD = AC and 

AD = DE

To find : ∠BAE

In  ∆ABC

AB = BC = CA 

∴ ∠A + ∠B + ∠C = 60° ---------------(i)

In ∆ABC,

Ext. ∠ACB = ∠CDA + ∠CAD = 60° 

But AC = CD            ( Given)

∴ ∠ADC = ∠ CAD = 30° -----------------(ii)

Again in ∆ADC,

Ext. ∠ADC = ∠DAE + ∠DEA = 36°

But AD = DC          (Given)

∴ ∠DAE = ∠ DEA = 15° -----------------(iii)

From (i), (ii), (iii)

∴ ∠BAE = ∠BAC + ∠CAD + ∠DAE

               = 60° + 30° + 15° 

               = 105°

Q 3) In ∆ ABC, AC = BC, ∠BAC is bisected by A and AD = AB. Find ∠ACB.

Solution.

In ∆ ABC, 

AC = BC, 

∠BAC is bisected by A and AD = AB

To find : 

∠ACB

In ∆ ABC, 

AC = BC, 

∠A = ∠ B    --------------------------(i)

In ∆ ABD,

AB = AD

∠B = ∠D

In ∆ ADC, 

Ext.  ∠D =  ∠DAC +  ∠C = 1/2  ∠A +  ∠C

 ∠B = 1/2  A +  ∠C

 ∠A = 1/2  A +  ∠C  ---------------------(using i)

 ∠A = 1/2  A +  2/2∠C

 ∠A = 1/2 ( A +  2∠C)

 2∠A - A = 2∠C

           A = 2∠C

But 

∠A + ∠B + ∠C = 180°        (sum of angles of triangles)

2∠C + 2∠C + ∠C = 180°

                    5∠C = 180°

                      ∠C = 180°/5

                      ∠C = 36°

                       ∠AC = 36°

Q 4) In ∆ ABC, AC = BC, DE is drawn is drawn parallel to BC through A . ∠EAC = 42°. Find angle x.

Solution.

In ∆ ABC, AC = BC

DE is  drawn parallel to BC through A.

 ∠EAC = 42°

To find : angle x

DE ∥ BC

∴ ∠C = ∠EAC = 42°

∠CAB = x

CA = CB ( Given)

∴ ∠B = ∠CAB = x

Now in ∆ ABC, we have

∠A + ∠B + ∠C = 180°        (sum of angles of triangles)

x + x + 42° = 180°        (sum of angles of triangles)

           2x = 180° - 42°

             x = 138 /2

             x = 69°

Q 5) In  ∆PQR, PQ = PR , ∠P = ( 2x +20)° and ∠R = ( x + 10)°. Find the value of x . Assign a special name to the triangle.

Solution. 

In  ∆PQR, 

PQ = PR , ∠P = ( 2x +20)° 

and ∠R = ( x + 10)°. 

Find the value of x .

In  ∆PQR, 

PQ = PR  ---------------------( Given)

∠Q = ∠R = (x + 10)°

∠P + ∠Q + ∠R = 180°        (sum of angles of triangles)

2x +20° + x + 10° + x + 10° = 180°   

                               4x + 40° = 180°  

                                   4x  = 180° - 40°

                                    x = 140° /4

                                    x = 35°

Now ,

∠P = 2x + 20 = 2* 35 +20 = 70 + 20 = 90°

 ∆PQR is a right angled triangle.

Q 6) In the given figure, AB = AC, AD  BC, ∠PAC = 102°. Find the value of x and y.

Solution

In the given figure,

AB = AC, AD   BC

∠PAC = 102°

Find the value of x and y

In ∆ABC,

AB = AC -----------------( Given)

∠ B = ∠ C = x

and Ext. ∠PAC = ∠C + ∠B = x + x = 2x

∴ 2x = 102° = x = 102 /2 = 51°

In ∆ABD, ∠D = 90°

∠BAD + ∠ B + ∠ D = 180°

y + 51 + 90 = 180

y + 141 = 180 

  y = 180 - 141

  y = 39°

x = 51° and y = 39°

Q 7) In the given figure, PQ   AB, AQ = QB, ∠PAC = 42°,   C = 68°. Find ∠ABC.

Solution.

In the figure,

PQ    AB, 

AQ = QB, 

∠PAC = 42° and  C = 68°

To find :  ∠ABC

In ∆APC; we have

∠PAC + ∠APC + ∠ACP = 180°

42° + APC + 68° = 180°         ( angle sum property)

110 + ∠APC = 180

∠APC = 180 - 110 = 70°

Now in ∆ABP,

PQ ⊥ AB and AQ = QB

∴ PQ is the perpendicular bisector of AB

∴ ∠PAB = ∠PBA

and ext. ∠APC = ∠PAB + ∠PBA

                 70° = ∠PAB + ∠PBA

                 70° = ∠PBA + ∠PBA

            2∠PAB  = 70°  

              ∠PAB  = 70°/2

         ∠PAB  = ∠ABC  = 70°         ------(AQ = QB)

Q 8  In the given figure, AB = AD, ∠PAD = 70° and ∠DBC = 90°. Find x, ∠ BDQ and ∠BCD 

if AB  DC.

Solution:

In ∆ADB, AB = AD

∴ ∠ABD = ∠ADB = x             

and ex. ∠PAD = ∠ABD + ∠ADB

                70°   = x + x   = 2x

                 x = 70/2 = 35°    

                 x = 35°

Q 9) In the given figure, AB ∥ FC, B = 70° and ∠FDE =148°, Find the values of a and b.

Solution:

AB ∥ FC

∠ABC = ∠BCF = 180°        --------( Co -interior angles)

70° + a = 180°

a = 180° - 70° = 110°

∠FDE + ∠FDC = 180°

148 + ∠FDC = 180°

∠FDC = 180° - 148° = 32°

Now in FCD

Ext. ∠FCB = ∠CFD + ∠CDF

110° = b + 32°

b = 110° - 32° = 78°

a = 110°, b = 78°

Q 10) ∠ECF = 3∠ACE and ∠ADB = 72°. Find the value of x.

Solution:

In the given figure

∠ECF = 3∠ACE

∠ADB = 72°, AD  EC

Find the value of x

AD  EC

∴ ∠ECD = ∠ADB = 72°             ( corresponding angles)

But ∠ECF = ∠ECD = 180°         ( Linear pair)

∠ECF = 72° = 180°

∠ECF = 180°- 72° = 108°

But 

∠ECF = 3∠ACE

∴ ACE = 1/3 ECF = 1/3 * 108° = 36°

Since. AD  EC

 ∠DAC = ∠ACE   = 36°           ( alternate angles)



























No comments

Powered by Blogger.