Banking Class 10

Banking


Exercise 

1. Archana deposited ₹ 400 per month for 3 years in a bank's recurring deposit account. If the bank pays interest at the rate of 10% p. a., find the amount she gets on maturity.

Solution : 

MI = ₹ 400 

n = 3 years = 36 month

r = 10%

MV = ?

MV = MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

       = 400 * 36 + [ 400 * 36 ( 36 +1) 10 / 2 * 12 * 100]

       = 14400 + [400 * 36 * 37 *10 / 2 * 12 * 100]

       = 14400 + [60 * 37]

       = 14400 + 2220

       = 16620

2. Mr. Antao has a two year deposit account in a bank where he deposits  900 per month. Find the amount received by him at the time of maturity, if the rate of interest is 5% p.a.

Solution :

n = 2 years = 24 months 

MI = ₹ 900

r = 5%

MV =  MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

       = 900 * 24 + [ 900 * 24 ( 24 +1) 5 / 2 * 12 * 100]

       = 21600 + [900 * 24 * 25 *5 / 2 * 12 * 100]

       = 21600 + [9 * 25 * 5]

       = 21600 + 1125

       =  22725

3. Joseph has an account in recurring deposit scheme for 2 years. He deposits 1500 per month. If the rate of interest is 8% p. a., calculate the amount he would receive at the time of maturity.

Solution :

n = 2 years = 24 months

MI = ₹ 1500 

r = 8 %

MV = MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

       = 1500 * 24 + [ 1500 * 24 ( 24 +1) 8 / 2 * 12 * 100]

       = 36000 + [1500 * 24 * 25 * 8 / 2 * 12 * 100]

       = 36000 + [15 * 25 * 8]

       = 36000 + 3000

       =  39000

4. Mrs. Ramani has a three-year recurrent deposit account in the State Bank. She deposits ₹ 600 per month. Calculate the amount she would receive at the time of maturity if the rate of interest in 9% p. a.

Solution : 

n = 3 years = 36 months

MI = ₹ 600

r = 9 %

MV = MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

       = 600 * 36 + [ 600 * 36 ( 36 +1) 9 / 2 * 12 * 100]

       = 21600 + [600 * 36 * 37 * 9 / 2 * 12 * 100]

       = 21600 + [9 * 37 * 9]

       = 21600 + 2997

       =  24597

5. Rajesh deposit ₹ 1000 every month in a recurring deposit account for three years. Calculate the rate of interest if the matured value is  40,440.

Solution : 

MI = ₹ 1000

n =  3 years = 36 months

r = ?

MV = ₹ 40440

MV = MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

40440    = 1000 * 36 + [ 1000 * 36 ( 36 +1) r / 2 * 12 * 100]

40440    = 36000 + [1000 * 36 * 37 * r / 2 * 12 * 100]

40440    = 36000 + [5 * 3 * 37 * r]

40440    = 36000 + 555r

   555r    =  40440 - 36000

  555r    = 4440

       r = 4440 / 555

       r = 8 %

6. Ravina deposits  600 per month in a recurring deposit scheme for two years. If she receives rupees 15,450 at the time of maturity. Calculate the rate of interest per annum.

Solution : 

MI = ₹ 600

n = 2 years = 24 months

MV = ₹ 15450

r = ?

MV = MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

15450    = 600 * 24 + [ 600 * 24 ( 24 +1) r / 2 * 12 * 100]

15450    = 14400 + [600 * 24 * 25 * r / 2 * 12 * 100]

15450    = 14400 + [3 * 2 * 25 * r]

15450    = 14400 + 150r

   150r    =  15450 - 14400

  150r    = 1050

       r = 1050 / 150

       r = 7 %

7. Vineeta deposits  800 per month in a cumulative deposit account for 3 years. If the account payable at the time of maturity is ₹ 31,464. Calculate the rate of interest.

Solution : 

MI = ₹ 800

MV =  31464

n = 3 years = 36 months

r =  ?

MV = MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

31464    = 800 * 36 + [ 800 * 36 ( 36 +1) r / 2 * 12 * 100]

31464     = 28800 + [800 * 36 * 37 * r / 2 * 12 * 100]

31464     = 28800 + [4 * 3 * 37 * r]

31464     = 28800 + 444r

   444r    =  31464 - 28800

  444r    = 2664

       r = 2664 / 444

       r = 6 %

8. Mr. Madhav Rao gets ₹ 6455 at the end of 1 year when he deposits ₹ 500 per month in a recurring deposit scheme. Find the rate of interest.

Solution : 

MI = ₹ 500

MV =  6455

n = 1 years = 12 months

r =  ?

MV = MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

6455    = 500 * 12 + [ 500 * 12 ( 12 +1) r / 2 * 12 * 100]

6455     = 6000 + [500 * 12 * 13 * r / 2 * 12 * 100]

6455     = 6000 + [5 * 13r/2]

6455     = 6000 + 65r/2

  65r/2   =  6455 - 6000

  65r/2    = 455

       r = 455 * 2 / 65

       r = 910 /65

       r = 14 %

       

9. Zaheeda deposits a certain sum of money, every month in a recurring deposit account for 2 years. if she receives ₹ 37875 at the time of maturity and the rate of interest is 5%, find a monthly deposit.

Solution : 

MV = ₹ 37875

n = 2 years = 24 months

r =  5 %

MI = ?

MV = MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

37875   = MI * 24 + [MI * 24 ( 24 +1) 5 / 2 * 12 * 100]

37875     = 24MI + [MI * 24 * 25 * 5 / 2 * 12 * 100]

37875    = 24MI + 5MI/4

37875     = 96MI + 5MI/4

 37875   =  101MI/4

  37875 * 4  = 101MI

       MI = 37875 *4/101

       MI = ₹ 1500

10. Srinidhee deposits a certain sum of money every month in a recurring deposit scheme for 2 years at 6% p.a. If the amount payable to her at the time of maturity of the account is  20,400, find the monthly installment.

Solution : 

MV = ₹ 20400

n = 2 years = 24 months

r =  6 %

MI = ?

MV = MI * n + [ MI * n(n+1) r / 2 * 12 * 100]

20400   = MI * 24 + [MI * 24 ( 24 +1) 6 / 2 * 12 * 100]

20400     = 24MI + [MI * 24 * 25 * 6 / 2 * 12 * 100]

20400    = 24MI + 3MI/2

20400     = 48MI + 3MI/2

 20400   =  51MI/2

  20400 * 2  = 51MI

       MI = 20400 * 2/51

       MI = ₹ 800






























































































































































































































No comments

Powered by Blogger.