Irrational Numbers Class 9
Class 9
IRRATIONAL Numbers : If a number cannot be
expressed in the form p/q, where p,q, (q ≠ 0) are integer and do not have any common factor
except 1, then it is an irrational number.
1. Express
the following surds in simplest form.
i)
√ 75 = √3*5*5 = 5√3
ii)
√ 80 = √4*4*5 = 4√5
iii)
√ 96 = √4*4*6 = 4√6
iv)
√ 112 = √4*4*7 = 4√7
v)
√ 162 = √9*9*2 = 9√2
2. Write the simplest rationalising factor of:
i) √32 = √2*2*2*2*2= 4√2
so here rationalising factor of √32 is √2
ii)
√48 = √4*4*3 = 4√3
so here rationalising factor of √48 is √3
iii) √72 = √3*3*2*2*2 = 6√2
so here rationalising factor of √72 is √2
iv)
5√3 + 8
To rationalise 5√3 + 8,
multiply by 5√3 - 8
so here rationalising factor of 5√3 + 8 is 5√3 - 8
v)
√7 -√5
To rationalise (√7 -√5), multiply by (√7 +√5)
so here rationalising factor of √7 -√5 is √7 +√5
vi)
√6 + √3
To rationalise (√6 + √3), multiply by (√6 - √3)
so here rationalising factor of √6 + √3 is √6 - √3
3. Simplify
the following:
i) √75 - √12
+ √27
=√5*5*3 - √2*2*3 + √ 3*3*3
= 5√3 - 2√3 + 3√3
= (5 – 2 +3) √3
= 6√3
ii) 3√11 + 8√99 - √44
= 3√11 + 8√ 9*11 - √4*11
= 3√11 + 8*3√11 - 2√11
= 3√11 + 24√11 - 2√11
= (3+24-2) √11
= 25√11
iii) 3√63 - 2√28 - √112
= 3√9*7 - 2√4*7 - √16*7
= 3*3√7 – 2*2√7 - 4√7
= 9√7 - 4√7 - 4√7
= (9-4-4) √7
= 1√7
= √7
iv) 5√18 +7√50 - 10√8
= 5√2*9 + 7√25*2 - 10√4*2
= 5*3√2 + 7*5 √2 – 10*2√2
= 15√2 + 35√2 - 20√2
= (15 +35 -20) √2
= 30√2
v) 6√72 - √18 - 8√32
= 6√36*2 - √9*2 - 8√16*2
= 6*6√2 - 3√2 - 8*4√2
= 36√2 - 3√2 -32√2
= (36 - 3 - 32) √2
= 1√2 = √2
4. Expand:
i) ( 2 +
√5)² = 2² + (2*2*√5) +(√5)² using (a + b)2 = a2 + 2ab + b2
= 4 + 4√5+ 5
=9+4√5
ii) (7 - √3)² = 7² - (2*7*√3) +(√3)² using (a - b)2 = a2 - 2ab + b2
= 49 - 14√3+ 3
= 52 - 14√3
iii) (2√3 - 5√2)² = (2√3)² - (2*2√3*5√2) +(5√2)² using (a - b)2 = a2 - 2ab + b2
= 12 - 20√6+ 50
= 62 - 20√6
iv) (4√5 + 3√7)² = (4√5)² + (2*4√5*3√7) + (3√7)² using (a + b)2 = a2 + 2ab + b2
= 80 + 24√35 + 63
= 143 + 24√35
5) Find the Product
i) (3 - √5) (3 + √5) = 3² - √5² = 9 – 5 = 4 using (a+b) (a-b) = a² - b²
ii) (√2 + 3√11) (5√2 - 2√11)
=√2*5√2
- √2*2√11 + 3*5*√11*2 – 3*2*11
=10 - 2√22 + 15√22 - 66
= 13√22
- 56
iii) (5√7 + 3) (4 - √7)
= 5√7*4 -5√7*√7 +3*4 – 3*√7
= 20√7 – 35 + 12 - 3√7
= 17√7 - 23
Post a Comment