Class 8 Rational Numbers

Rational Numbers

The numbers which can be expressed in the form p/q, where p and q are integers and q  0, are called rational numbers.

1. Find the additive inverse of :

i) 9/13 = -9/13

ii) 16/7 = -16/7

iii) -3/23 = 3/23

iv) 8/-11 = 8/11

v) -22/15 = 22/15

vi) -11/-9 = -11/9


2. Find the sum

i) -7/17 + 6/17 = -7+6/17 = -1/17

ii) -5/12 + 7/-12 = -5/12 + (-7/12) = -5-7/12 = -12/12 = -1

iii) 8/15 +5/12 

here denominator are different, so for addition we have to make it same.

first find out LCM of 15 and 12

LCM is 60

so, 8*4/15*4 + 5*5/12*5

= 32/60 + 25/60

= 57/60

iv) -11/18 + 5/-12

= -11/18 + (-5/12)

here denominator are different, so for addition we have to make it same.

first find out LCM of 18 and 12

LCM is 36

so, -11*2/18*2 - 5*3/12*3

      =  -22/36 - 15/36

      = -22-15/36

      = -37/36

      = -11/36

v) -11/6 + -3/4 + 5/8 + -7/3

     here denominator are different, so for addition we have to make it same.

first find out LCM of 3, 4, 8, and 3

LCM is 24

so, -11*4/6*4 - 3*6/4*6 + 5*3/8*3 - 7*8/3*8

      = -44/24 -18/24 + 15/24 -56/24

      = -44-18+15-56/24

      = -103/24

      = -47/24


vi) 4/7 + 2/-3 +5/21 + -8/9

  = 4/7 - 2/3 + 5/21 - 8/9

here denominator are different, so for addition we have to make it same.

first find out LCM of 7 , 3, 21 , 9

LCM is 63

so, 4*9/7*9 - 2*21/3*21 + 5*3/21*3 - 8*7/9*7

   = 36/63 -42/63 + 15/63 - 56/63

   =  36-42+15-56/63

   =  - 47/63


3. Subtract

i) 2/3 from 5/6

means 5/6 - 2/3

here denominator are different, so  we have to make it same.

first find out LCM of 6 , 3

LCM is 6

so, 5/6 - 2*2/3*2

    = 5/6 - 4/6

    = 1/6

ii) -2/5 from -5/7

means -5/7 - (-2/5)

         = -5/7 +2/5

 here denominator are different, so  we have to make it same.

first find out LCM of 7 and 5

LCM is 35

so, -5*5/7*5 + 2*7/5*7

    = -25/35 + 14/35 

    = -25+14/35

    = -11/35

iii) 4/9 from -7/8

means -7/8 -4/9

first find out LCM of 8 and 9

LCM is 72

  so, -7*9/8*9 - 4*8/9*8

      = - 63/72 - 32/72

      = -63-32/72

      = -95/72

      = -123/72

iv) -11/6 from 8/3

means 8/3 - (-11/6)

           8/3 +11/6

first find out LCM of 3 and 6

LCM is 6

so, 8*2/3*2 + 11/6

     = 16/6 + 11/6

     = 27/6

     = 43/6

       = 41/2      

4. The sum of two rational number is -4/9. If one of them is 13/6 , then find the other.

let other number be x

so

x + 13/6 = -4/9

x = -4/9 - 13/6

 first find out LCM of 9 and 6

LCM is 18

x = -4*2/9*2 - 13*3/6*3

x = -8/18 -39/18

x = -8-39/18

x = -47/18 

x = -211/18 

other number is -211/18

5. What number should be added to -2/3 to get -1/7

Let the number be x

so,

-2/3 + x = -1/7

x = -1/7 +2/3

first find out LCM of 7 and 3

LCM is 21

x = -1*3/7*3 + 2*7/3*7

x = -3/21 + 14/21

x = 11/21

 11/21 is added to -2/3 to get -1/7


6. What number should be subtracted from -2 to get 7/11

let the number be x

so,

-2 - x =7/11

-x = 7/11 +2

-x = 7/11 + 2*11/1*11

-x = 7/11 + 22/11

-x = 7+22/11

-x = 29/11

x = -29/11

x = -27/11

-27/11 should be subtracted from -2 to get 7/11


7.What number should be added to -1 so as to get 5/7

let the number be x

-1 +x = 5/7

x = 5/7 +1

x = 5/7 + 1*7/1*7

x = 5+7/7

x = 12/7

8 . What number should be subtracted from -2/3 to get -1/6

Let the number be x

so, 

-2/3 -x = -1/6

-x = -1/6 +2/3

-x = -1/6 + 2*2/3*2

-x = -1/6 +4/6

-x = 3/6

-x = 1/2

x = -1/2

Multiplication of Rational Numbers Class 8

Properties of Multiplication of Rational numbers

Property 1 : Closure Property : The product of two rational numbers is always a rational number

                      Example : -2/9 and 15/4 are rational numbers.

                                         -2/9 * 15/4 = -30/36 = -5/6 

                                                                              which is also rational number.


Property 2 : Commutative Law : If a/b and c/d are any two rational numbers, 

                                                        then (a/b)*(c/d) = (c/d)*(a/b)

                      Example : -36/25 * -15/28 = -15/28 * -36/25


Property 3 : Associative Law : If a/b, c/d, and e/f are three rational numbers, 

                                                     then  (a/b * c/d)*e/f = a/b * (c/d * e/f)

                     Example : 2/5, -5/12 and -7/15 are three rational numbers

                                       (2/5 * -5/12) * -7/15 = 2/5 * (-5/12 * -7/15)


Property 4 : Existence of Multiplicative Identity : The rational number 1 is the multiplication                                                                                              identity for rational. So,  a/b * 1 = 1*a/b = a/b

                       Example : (-13/19*1) = (1*-13/19) = -13/19


Property 5 : Existence of Multiplicative Inverse : Every non-zero rational number a/b has a                                                                                                multiplicative inverse b/a (reciprocal )                                                                                                       so, a/b*b/a = b/a*a/b =1

                       Example : 16/15 is reciprocal of 15/16 ,

                                           16/15*15/16 = 15/16* 16/15 = 1


Property 6 : Distributive law of Multiplication over Addition : For any three rational numbers

                       a/b, c/d and e/f , a/b * (c/d + e/f) = (a/b * c/d) + (a/b*e/f)

                       Example : (-3/7) * (8/11+4/9) = (-3/7 * 8/11) + (-3/7*4/9)


Property 7 :  Multiplicative Property of Zero : For any rational number a/b, 

                        (a/b*0) = (0*a/b) = 0

                        Example : 3/16 *0 = 0*3/16 = 0


1.  Find the Products

 i) 4/9 * 7/12 

ii) -9*7/18

iii) -3/16 * 8/-15

iv) 6/7 * -21/12

v) 5/-18 *-9/20

vi) -13/15 * -25/28

vii) 7/24* (-48)

viii) -13/5 * (-10)




2.  Find the multiplicative inverse of ;

i) -17/12 = -12/17
ii) -16 = -1/16
iii) 0/2 = does not exist
iv) -3/-5 = 5/3
v) 2/-5 = -5/2

3. The product of two rational number is -7 . If one of the number is -8/11; find the other.

Let the other number be x.
so,
-8/11 *x = -7

x = -7 * (-11/8)

x = -77/8

x = 95/8                     the other number is 95/8    


4. Find the area of a rectangular part which is 363/m long and 162/5  m broad

         


                                          




5. Find the area of square plot of land whose each side measures 81/2 m.















Properties Of Division of Rational Numbers

 Property 1 : Closure Property : If a/b and c/d are any two rational numbers such that c/d ≠0, then(a/b ÷ c/d)  is also a rational number.

Example : Consider the rational numbers -3/40 and 11/24. 

-3/40 ÷ 11/24 = -3/40 * 24/11 = -72/440 = -18/110, which is also rational.

Property 2 : For any rational number a/b, we have :

                     (a/b ÷ 1) = a/b.

Example : 5/7 ÷ 1 = 5/7 ÷ 1/1 = 5/7 *1/1 = 5/7

Property 3 : For any non-zero rational number a/b, we have :

                      (a/b ÷ a/b ) = 1

Examples : 5/6 ÷ 5/6 = 5/6 *6/5 = 30/30 = 1


1. Find the quotient :

i) 17/8 ÷ 51/4

ii) -16/35 ÷ 15/14

iii) -12/7 ÷ (-16)

iv) -9 ÷ (-5/18)





2. Divide the sum of 13/5 and -12/5 by the product of -31/7 and 1/-2.






3, Divide the sum of 65/12 and 8/3 by their difference.





4. The area of room is 651/4   sq. metres. If its breadth is  51/16 metres, what is its length?


















 

No comments

Powered by Blogger.