Questions Based On Algebraic Identities class 8

 

Questions Based On Algebraic Identities 

Exercise 
 
1. If ( x + 1/x ) = 4 , find the valves of :

i) ( x - 1/x)
ii) ( + 1/ )
iii)  x4+ 1/x4)

i) ( x - 1/x)

( x + 1/x ) = 4 
     squaring both side
   
( x + 1/x )2 = 42
 
(x)² + (1/x)² + 2* x * 1/x = 16
  
x² + 1/x² + 2 = 16
  
x² + 1/x² - 2 + 4 = 16

x² + 1/x² - 2  = 16 - 4

( x - 1/x )2 = 12

( x - 1/x ) 12

( x - 1/x ) ± 23

ii) ( + 1/ )

( x + 1/x )2 = 42
 
(x)² + (1/x)² + 2* x * 1/x = 16
  
x² + 1/x² + 2 = 16

x² + 1/x²  = 16 - 2

x² + 1/x²  = 14

iii)  x4+ 1/x4)

x² + 1/x²  = 14

squaring both side

(x²)² + (1/x²)² + 2* x² * 1/x² = 14²

x4 + 1/x4 + 2 = 196

x4 + 1/x4  = 196 - 2

x4 + 1/x4  = 194

2. If ( z - 1/z ) = 6 , find the valves of :

i) ( z + 1/z)
ii) (z² + 1/z² )
iii)  z4+ 1/z4)

i) ( z + 1/z)


( z - 1/z ) = 6 
     squaring both side
   
( z - 1/z )2 = 62
 
(z)² + (1/z)² - 2*z * 1/z = 36
  
z² + 1/z² - 2 = 36
  
z² + 1/z² + 2 - 4 = 36

z² + 1/z² + 2  = 36 + 4

( z + 1/z )2 = 40

( z + 1/z ) 40

( z + 1/z ) ± 210

ii) ( + 1/ )

( z - 1/z )= 62
 
(z)² + (1/z)² - 2* z * 1/z = 36
  
z² + 1/z²- 2 = 36

z² + 1/z²  = 36 + 2

z² + 1/z²  = 38

iii)  z4+ 1/z4)

z² + 1/z²  = 38

squaring both side

(z²)² + (1/z²)² + 2* z² * 1/z² = 38²

z4 + 1/z4 + 2 = 1444

z4 + 1/z4  = 1444 - 2

z4 + 1/z4  = 1442

3. (a² + 1/a²)  =23, find the value of (a + 1/a).

(a² + 1/a²)  =23
 
Adding 2 both side

a² + 1/a² + 2  = 23 + 2

a² + 1/a² + 2  = 25

( a + 1/a )52

( a + 1/a ) = ± 5

4. (x² + 1/x²)  = 102 , find the value of (x - 1/x).

(x² + 1/x²)  = 102
 
Subtracting 2 both side

x² + 1/x² - 2  = 102 - 2

x² + 1/x² + 2  = 100

( x - 1/x )1002

( x - 1/x ) = ± 10

5. a + b = 8 and ab = 15 , find the value of  (a² + b² )

a + b = 8

( a + b )2 = 82


a² + b² + 2ab = 64

a² + b² + 2*15 = 64

a² + b² + 30 = 64

a² + b²  = 64 - 30

a² + b²  = 34

6. If a + b = 11 and (a² + b² ) = 61 , find the value of ab  

a + b = 11

( a + b )2 = 112


a² + b² + 2ab = 121

61 + 2ab = 121

2ab = 121 -61

 2ab = 60

   ab = 60/2

   ab = 30

7.  If a² + b² = 13 and ab = 6 , find the value of (a + b ) .
 
   (a + b )² = a² + b² + 2ab

   (a + b )² = 13 + 2 * 6 

   (a + b)² = 13 + 12

    (a + b) =  ± 5

8. Find the value of :

i) 36x² + 49y² + 84xy, when x = 3, y = 6. 

36x² + 49y² + 84xy = ( 6x + 7y)2

                                = (6*3 + 7*6)2

                                = (18 + 42)2

                                = 602    

                                = 3600

ii) 25x² + 16y² - 40xy, when x = 6, y = 7. 

 25x² + 16y² - 40xy = ( 5x - 4y)2

                                = (5*6 - 4*7)2

                                = (30 - 28)2

                                = 22    

                                = 4


No comments

Powered by Blogger.