Mensuration For Class 9

Mensuration 


1. Find the area of a triangle with following sides ( All measures area in cm)

i) 10, 17, 21
ii) 17, 25, 28

Solution :

i) Let a =10, b = 17, c = 21

    s = a + b + c / 2 = 10 + 17 + 21 / 2 = 48/2 = 24

    Using Heron's formula

    Area of triangle = s( s- a) (s - b ) ( s - c)

                           = 24( 24 - 10) ( 24 - 17) ( 24 - 21)

                           = 24 * 14 * 7 * 3
                         
                              =  2 * 2 * 2 *3 * 2 * 7 * 7 * 3

                              =  2 * 2 * 3 * 7

                              = 84 cm2


ii) 17, 25, 28

 Let a =17, b = 25, c = 28

    s = a + b + c / 2 =  17 + 25 + 28/ 2 = 70 /2 = 35

    Using Heron's formula

    Area of triangle = √ s( s- a) (s - b ) ( s - c)

                           =  35( 35 - 17) ( 35 - 25) ( 35 - 28)

                           = √ 35 * 18 * 10 * 7
                         
                              =  5 * 7 * 2 *3 * 3 * 2 * 5 * 7 

                              =  5 * 7 * 2 * 3

                              = 210 cm2
                           
     2. The sides of a triangle are in the ratio 5 : 12 ; 13. If its perimeter is 90 cm, find the area of the triangle.

Solution.

Given ratio in sides = 5 : 12 : 13
Perimeter = 90 cm
and sum of ratios terms = 5 + 12 + 13 = 30

first side = 90/30 * 5 = 15 cm = a

second side = 90/30 * 12 = 36cm = b

third side = 90 /30 = 13 = 39 cm = c 

                  s = 90 /2 = 45

Area of triangle = = √ s( s- a) (s - b ) ( s - c)

                           =  45( 45 - 15) ( 45 - 36) ( 45 - 39)

                           = √ 45 * 30 * 9 * 6
                         
                           =  3 * 3 * 5 * 2 * 3 * 5 * 3 * 3 * 2 * 3 

                           =  2 * 3 * 3 * 3 * 5

                           = 270 cm2

3. In △ABC, ∠ A = 90° , AB = 14 cm , AC = 48 cm. Find 
i) Area  of △ABC
ii) length of perpendicular from A to BC

Solution,
In △ABC, ∠ A = 90° , AB = 14 cm , AC = 48 cm. 
AD ⊥ BC
Area  of △ABC = 1/2 * base * height
                            = 1/2 * 14 * 48
                            = 336  cm2

Using pythagoras theorem, we have

BC =  AB + BC 2

      =  14 2+ 48 2

      √196 + 2304
       
      = √2500

       = 50 cm

AD = 2 * Area  of △ABC /BC
      
       = 2 * 336/ 50 

       = 672 / 50
       
       = 13.44 cm

4. Find the area of an isosceles right triangle with hypotenuse 40 cm.

Solution .

ABC is an isosceles right triangle in which AB = BC and AC = 40 cm.


                                                              
Let each equal side be = x
Thus by pythagoras theorem, we have

        x + x = 402

           2 x = 1600

             x 2 = 1600 / 2

              x 2 = 800

              x = 20 2


Area  of △ABC = 1/2 * AB * BC

                           = 1/2 * x * x 

                           = 1/2 x 2

                          = 1/2 * 800

                          = 400 cm2

Q 5. The base of an isosceles triangle is 40 cm and its area is 420 cm2. Find the length of its equal sides.
Solution :

 Here ABC is an isosceles triangle and AB = AC and BC = 40 cm.


 
Area of △ABC = 420 cm2
Draw AD ⊥ BC which bisects BC at D

 BD = DC = 40/2 = 20cm

Area  of △ABC = 1/2 * AD * BC

                 420   = 1/2 * AD * 40
                  AD  =  420 *2 /40
                  AD  = 21 cm

        
In ABD ,

Using pythagoras theorem, we have

AB =  AD + BD 2

      =  21 2+ 202

      √441 + 400
       
      = √841

       = 29 cm

Each equal side = AB = AC = 29 cm.

Q 6. In an isosceles triangle, the unequal side is 22 cm and perimeter is 144 cm. Find its area.

Solution.                                                                 

Perimeter of an isosceles triangle = 144 cm

Unequal side = 22 cm

Let equal side be x

Perimeter = sum of three side

         144 = 22 + x + x

  144 - 22 = 2x

        122 = 2x

            x = 122 / 2
            x = 61 cm

Each equal side = 61 cm


s = Sum of sides / 2 =  61 + 61 + 22/ 2 = 144 /2 = 72

    Using Heron's formula

    Area of triangle = √ 72( 72- 61) (72 - 61 ) ( 72 - 22)

                           =  72( 11) ( 11) ( 50)

                           = √ 2 * 2 * 2 * 3 * 3 * 11 * 11 * 2 * 5 * 5
                         
                              = 2 * 2 * 3 * 11 * 5

                              = 660 cm2
                           
Q 7. If the area of an equilateral triangle is 25m2, find the perimeter.

Solution :

Given , area of equilateral triangle = 25m2,
let side be x 

area of equilateral triangle = 3/4 * x2

                                 253  = 3/4 * x2

                                      x= 25
                                      x= 100
                                      x   = 10

                                side = 10 cm
                      
        Perimeter = 10 + 10 + 10 = 30 cm

Q 8. In the given figure, PQR is an equilateral triangle of side 20cm. △ QSR is inscribed in it . 
∠ QSR = 90°, QS = 16 cm. Find i) SR , ii) the area of the shaded portion ( Take 3  = 1.732)

Solution : 
                                                                            
Given 
△ QSR is inscribed in △PQR
∠ QSR = 90°, 
QS = 16 cm.

In △ QSR , 

Using pythagoras theorem, 

QR  QS + SR 2

20 2  =  16 2+ SR2

400   =  256 + SR2
       
SR2   = 400 - 256

 SR    = 144

  SR = 12 cm


Area of △PQR = √ 3/4 * side2
                         √ 3/4 * 20 * 20
                         =  √ 3/4 * 400 
                         =   √ 3 * 100
                         =  1.732 * 100
                         = 173.2 cm2
 

Area of △QSR = 1/2 * QS * SR
                         = 1/2 * 16 *12
                         =  16 * 6
                         =   96 cm2


Area of shaded portion = 173.2 - 96 = 77.2 cm2


Q 9 ) In triangle PQR, ∠ Q = ∠ R = 45° and QR = 10 cm. Find its area.
Solution.                                                                          

In △ PQR, 
∠ Q = ∠ R = 45° 
QR = 10 cm
Draw PL ⊥ QR which bisects QR at L                              



QL = LR = 10 / 2 = 5 cm

In △ PQL, 
∠ Q = 45°
∠ L =  90°
∠ QPL =  90° - 45° = 45°

      PL = QL = 5 cm
Area of △ PQR = 1/2 * QR * PL
                          = 1/2 * 10 * 5 
                          = 25 cm2


Q 10) A triangular advertising board is 13dm, 14dm and 15dm in length. Find the cost of painting 

it at 10 per dm2 .
Solution :                                                                                         
 Given Sides of triangle
a = 13dm , b = 14dm , c = 15dm

s = 13 + 14 + 15 / 2 = 42 / 2 = 21dm

Area of triangle = 21( 21- 13) (21 - 14 ) ( 21 - 15)

                           =  21( 8) ( 7) ( 6)

                           = √ 3 * 7 * 2 * 2 * 2 * 7 * 2 * 3 
                         
                           = 2 * 2 * 3 * 7 

                           = 84 cm2

Rate of painting the board =10 per dm2

Total cost of painting = 84 * 10 = ₹ 840 



















































































































No comments

Powered by Blogger.