Exercise17A Word Problem Mensuration Part 2 Class 9

 Mensuration  



1) In △ABC, AB = 4 cm, altitude CF = 6 cm and AC = 3 cm. Find the length of altitude BE.

Solution : 
Given :
In △ABC, 
AB = 4 cm, 
CF = 6 cm 
AC = 3 cm.

Area of △ABC = 1/2 * base * altitude
                          = 1/2 * AB * CF
                          = 1/2 * 4 * 6
                          = 12 cm

Base  AC  = 3 cm
Length of altitude BE = area * 2/ base = 12 * 2/ 3 = 8cm

2) In △PQR , medians QS and RT intersect at right angles at G. If QS = 9cm and RT = 12cm.

Find  i) length of QG
         ii) area of △TQR
        iii) area of △PQR

Solution : 

In △PQR, median QS and RT interest at right angles at G.

QS =9 cm, RT = 12cm
In △ GQR, ∠G =  90° 

QG = 9 * 2/3 = 6cm

RG = 12 * 2/3 = 8cm

         △ GQR = 1/2 * GQ * GR

                       = 1/2 * 6 *8
                      
                       = 24 cm

But ratio is TG : GR = 1: 2

Area △TQR = 24 * 3/2 = 36 cm

But T is the mid point of PQ
Area △PQR = 2 * Area △TQR
                     = 2 * 36 = 72 cm


3) The base of isosceles triangle ia 16 cm. If the height on the base is 4 cm shorter than the equal sides, find the sides, height and area of the triangle.

Solution :
 In isosceles △ABC, AB = AC, AD ⊥ BC
Base BC = 16 cm
Let each equal side = x cm

Area of △ABC = 1/2 * base * altitude

                         = 1/2 * 16 * ( x - 4)

                         = 8( x - 4) cm2

AD ⊥ BC
 so, D is the mid point of BC

BD = DC = 16/2 = 8cm

Now, in right △ABD, we have

AB= AD+ BD2

x= (x - 4)+ 82

x= x+ 16 - 8x + 64

8x = 80 

x = 80 / 8

x = 10

Length of each equal side = 10 cm

height of the triangle = x - 4
                                  = 10 - 4 = 6 cm

area of triangle ABC = 8( 10 - 4) = 8 * 6 = 48 cm

Q 4 ) The base and height of a triangle are in the ratio 7:5. If the area of the triangle is 280 cm2, find its  base and height.

Solution :

Area of triangle = 280 cm

Ratio of the base and height of the triangle = 7 : 5

Let the length of base of triangle be 7x , then 

Height of triangle = 5x

Area = 1/2 * base * height

         = 1/2 * 2x  *5x
         =  35/2 * x
280   =  35/2 * x
 
x = 280 * 2 /  35 = 16 = 4

x = 4
     
   Base = 7x = 7 * 4 = 28 cm
Height = 5x = 5 * 4 = 20 cm


Q 5 ) In the figure given alongside,
∠ ADB = 90° , AD = 9 cm , BD = 12 cm, BC = 25 cm and AC = 20 cm.

Find the i) length of AB ii) area of shaded part.

Solution :
 In right angled ADB ,

i) By pythagoras theorem, we have 

  AB= AD + BD
 
          = 9+ 12
        
          = 81 + 144 
      
          = 225

AB    = 15 cm 

ii) Let a = BC = 25 cm ; b = AC = 20 cm;

  C = AB = 15 cm

  s =  a + b + c / 2 = 25 + 20 + 15 / 2 = 30 cm

Thus, area  △ABC , 

s( s - a) ( s - b) ( s = c)

30 (30 - 25 ) ( 30 - 20)(30 - 15)

  30 * 5 * 10 * 15

=  2 * 3 * 5 * 5 * 2 * 5 * 3 * 5

= 2 * 3 * 5 * 5

= 150 cm 


area  of △ABD = 1/2 * AB *  BD
                          = 1/2 * 9 * 12
                          = 54  cm 

Area of shaded part =
area  of △ABC - area  of △ABD

= 150 - 54 = 96 cm2


Q 6) The perimeter of an isosceles triangle is 42cm. The base is 1 1/2 times the equal side. Find the length of each side.

Solution:

Given, perimeter of an isosceles triangle = 42 cm

Base= 1 1/2 * on of equal side

let each equal side =x

Perimeter of triangle = x + x + 3/2 x = 7/2 x

7/2 * x = 42 
 x = 42 * 2 /7 = 12

Each equal side  = 12cm

and base = 12 * 3/2 = 18 cm

lengths of sides are 12 cm, 12 cm, 18 cm.  


Q 7) In △PQR, ∠Q = 90° and QR is 4 cm more than PQ. If area of  △PQR = 96  cm2. Find the sides of triangle.

Solution:
In △PQR, 
Given,
 ∠Q = 90° and QR = 4 cm more than PQ.
And  area of  △PQR = 96  cm2.

Let PQ = x cm
then QR = ( x+ 4) cm

 area of  △PQR = 96  cm2.
                 96     = 1/2 * PQ * QR
                 96     = 1/2 * x * (x + 4)
       x(x + 4 )     =  96 * 2 

         x2 + 4x      = 192

        x2 + 4x - 192 = 0
        x2 + 16x -12x -192 = 0
          x (x+16) -12(x + 16) = 0
              ( x +16) ( x - 12) = 0
             x+16 = 0 or x -12 =0

x = -16 or x = 12

x = -16  is not possible being negative

PQ = 12 cm, QR = 12 + 4 = 16 cm

Then by pythagoras theorem, we have
     
PR = PQ 2 +  QR2    

      = √12 2 +  16
      √144 + 256  
     
      = 400
      
      = 20 cm

Required sides are 12 cm, 16cm, 20cm.

Q 8) Find the area of equilateral triangle with side 8cm. ( Take  √3 = 1.732 )

Solution :
Length of each side of an equilateral triangle = 8 cm

Area = √3/4 * side2

        =  1.732 /4 * 8 *8
        =  27.712cm2


Q 9) Find the cost of levelling a triangular piece of land measuring 80 m, 41 m and 41m, if the rate is  12 per m2



 Solution :

Sides of triangular piece of land arc 80 m, 41 m, 41 m.

Let a = 80, b = 41, c = 41;

s = a + b + c / 2 = 80 + 41 + 41 / 2 = 162/2 = 81

    Using Heron's formula

    Area of triangle = √ s( s- a) (s - b ) ( s - c)

                           = 81( 81- 80) ( 81 - 41) ( 81 - 41)

                           = √ 81 * 1 * 40 * 40
                         
                              =  9 * 9 * 2 *20 * 2 * 20 

                              =  9 * 2 * 20
                              = 360 m2

Given rate of levelling =  12 per m2

Total cost of levelling = 360 * 12  = ₹ 4320






















                         

No comments

Powered by Blogger.