Co-ordinate Geometry Class 9

Co-ordinate Geometry Class 9

Distance between points (x1,y1) and (x2, y2)

=√ (x2 - x1)^2 + ( y2 - y1)^2

Exercise :

Q 1. Find the distance between following points :

i) (3 , 5); (6, 9 )

=√ (x2 - x1)^2 + ( y2 - y1)^2

=√ (6 - 3)^2 + ( 9 - 5 )^2

=√ 3^2 + 4^2

 =√ 9 + 16

=√ 25

= 5

ii) (1, 2) and ( -5, -6)

=√ (x2 - x1)^2 + ( y2 - y1)^2

=√ (-5 -1)^2 + ( -6 -2)^2

=√ (-6)^2 + ( -8)^2

=√ 36 + 64

=√ 100

= 10

iii) (-2,  -5) and ( 6 , -20)

=√ (x2 - x1)^2 + ( y2 - y1)^2

=√ (6 + 2 )^2 + ( -20 + 5 )^2

=√ (8)^2 + ( -15)^2

=√ 64 + 225

=√ 289

= 17

iv) (13/2, -15/4) and ( -5/2,  33/4)

=√ (x2 - x1)^2 + ( y2 - y1)^2

=√ (-5/2 -13/2)^2 + ( 33/4 + 15/4)^2

=√ (-18/2)^2 + ( 48/16)^2

=√ (-9)^2 + (12)^2

=√ 81 + 144

=  225

= 15

v) ( 3√3, 6) and ( √3,  4 )

=√ (x2 - x1)^2 + ( y2 - y1)^2

=√ (√3 - 3√3)^2 + ( 4 - 6)^2

=√ (-2√3)^2 + ( -2 )^2

=√ 12 + 4

=√ 16

= 4

Q 2. 

i) A is on x-axis with abscissa 4 and B = ( -1, -12). Find the distance between A and B.

Solution. 

Using distance formula

A is on x- axis and its abscissa is 4.

Co-ordinates of A are ( 4, 0) and B ( -1, -12)

Distance between A and B

 ( -1 - 4)^2 + ( -12 - 0 )^2

 (-5) ^ 2 + (-12)^2

= 25 + 144

 169

= 13

ii) P lies on y- axis and its ordinate is 3.

Co - ordinates of P are ( 0 , 3) and Q ( 12 , - 13)

Distance between P and Q is

  ( 12 - 0)^2 + ( -3 - 13)^2

=  12^2 + 16^2

 144 + 256

= 400 

= 20

Q 3. Find the co-ordinates of circumcentre of  PQR where P = (6, -5), Q = ( 6, 7) , R = ( 8 , 7).

Solution :

Using distance formula,

P = (6, -5), Q = ( 6, 7) , R = ( 8 , 7)

O is the circumcentre of PQR

OP = OQ = OR

Let co-ordinates of O be ( x, y)

OP^2 = ( x - 6 )^2 + (y + 5)^2

OQ^2 = ( x - 6 )^2 + (y - 7)^2

OR^2 =  ( x - 8 )^2 + (y - 7)^2

since OP = OQ 

OP^2 = OQ^2

( x - 6 )^2 + (y + 5)^2 = ( x - 6 )^2 + (y - 7)^2

y^2 + 10y  + 25 =  y^2 - 14y + 49

          10y + 14y = 49 - 25

                    24y = 24

                         y = 24/24 = 1

Since OQ = OR 

OQ^2 =OR^2

( x - 6 )^2 + (y - 7)^2 = ( x - 8 )^2 + (y - 7)^2

x^2 - 12x + 36 =x^2 -16x + 64

-12x +16x = 64 - 36

            4x = 28

              x = 7

Co-ordinates of circumcentre be Q (7,1)

Q 4. Find the co-ordinates of a point on x - axis which is equidistant from A (2, -4) and B(8,4).

Solution

Let the point on x-area be P(x,0)

and given points A and B are A (2, -4), B(8, 4)

Since PA = PB 

      PA^2 = PB^2

      PA^2 = (x -2)^2 + (0 + 4)^2

and PB^2 = (x - 8 )^2 + (0 - 4)^2   

(x -2)^2 + (0 + 4)^2 = (x - 8 )^2 + (0 - 4)^2  

x^2 - 4x + 4 +16 = x^2 - 16x + 64 +16

-4x + 16x = 64 +16 - 4 -16

          12x = 60

              x = 60/12

              x = 5

 Required co-ordinates of P are (5,0).

Q 5. Find the co-ordinates of a point P on y-axis so that PA = PB where A = (-2, 4) and B = ( -5, -3 ).

Solution .

Let co-ordinates of point P on y - axis be ( 0, y)

and A ( -2, 4) , B (-5, -3) and PA =  PB

PA^2 = (0 + 2)^2 + (y - 4)^2

PB^2 = (0 + 5)^2 + ( y + 3)^2

PA = PB 

PA^2 = PB^2

(0 + 2)^2 + (y - 4)^2 = (0 + 5)^2 + ( y + 3)^2

4 + y^2 - 8y +16 = 25 + y^2 + 6y + 9

-8y -6y = 25 + 9 - 4 - 16

    -14y = 14

         y = 14/-14 = -1

 Co-ordinates of P are (0,-1).

Q 6. P is point on x -axis and abscissa -6 and Q is (2,15). Find the distance between P and Q.

Solution .

P is point on x-axis and abscissa is -6 and Q be the given point ( 2, 15)

Co-ordinates of P are (-6,0)

Now, PQ^2 = (x2 - x1)^2 + (y2 - y1)^2

                   =  ( 2 + 6)^2 + (15 + 0)^2

                   = (8)^2 + (15)^2

                   = 64 + 225

                   = 289 

            PQ  =  289 = 17 units

Q 7. Find the co- ordinates of points whose abscissa is -4 and which are at a distance of 15 units from (5, -9)

Solution:

Let co-ordinates of P be (-4, y) and Q is (5, -9) and distance between them is 15 units

(5 + 4)^2 + (-9 -y )^2 = 15^2

9^2 + 81 + y^2 +18y = 15^2

81 + 81 + y^2 +18y = 15^2

      162 + y^2 +18y = 225

                y^2 +18y = 225 - 162

                y^2 +18y = 63

                y^2 +18y - 63 =0

                y^2 + 21y - 3y -63 = 0

                y(y + 21) -3(y + 21) = 0

                  (y + 21) (y - 3) = 0

                  either  (y + 21)  = 0 or   (y - 3) = 0

                               y = -21 or y = 3

 Co-ordinates of P will be (-4, -21) or (-4,3)

Q 8. Prove that A(-5,4), B(-1,-2) are the vertices of an isosceles right angled triangle.

Solution. 

Given Points are A (-5, 4), B(-1, -2), C( 5, 2)

AB^2 = (-1 + 5)^2 + ( -2 -4)^2

          = (4)^2 + ( -2 -4)^2

          = 16 + 36 = 52

BC^2 = ( 5 + 1)^2 + ( 2 + 2)^2

          = 6^2 + 4^2

         = 36 + 16

         = 52   

CA^2 = (-5 -5)^2 + (4 - 2)^2

          = (-10) + 2^2

          = 100 + 4

          = 104

AB^2 = BC^2 

AB = BC

ABC is an isosceles triangle

AB^2 + BC^2 = 52 + 52 = 104 = CA^2

△ABC is a right triangle.

Hence △ABC is isosceles right triangle.

Q 9. The centre of a circle is ( 2, 6) and its radius is 13 units. Find x, if P( x, 2x) is a point on the circumference of the circle.

Solution 

Centre of a circle is O(2,6) and its radius is 13 units.

P(x, 2x) is a point on the circumference of the circle.

Join OP

OP^2 = (x2 - x1)^2 + (y2 - y1)^2

 13^2 = (2 - x)^2 + (6 - 2x)^2

169 = 4 + x^2 - 4x + 36 + 4x^2 - 24x

169 = 5x^2 - 28x + 40

5x^2 - 28x +40 -169 = 0

5x^2 - 28x +40 -129 = 0

5x^2 + 15x - 43x -129 = 0

5x(x + 3) - 43(x + 3) = 0

(x + 3) (5x - 43) = 0

either (x + 3) = 0 or (5x - 43) = 0

             x = -3 or x = 43/5

Q 10. Prove that P(-2, 2), Q(1, 4) and R(7 , 8) are collinear.

Solution 
Given Points are P( -2, 2) , Q ( 1, 4) , R(7, 8)

PQ  =√ (x2 - x1)^2 + ( y2 - y1)^2

       =√ (1 + 2)^2 + ( 4 - 2 )^2

       =√ 3^2 + 2^2

       =√ 9 + 4

       =√ 13

QR  =√ (x2 - x1)^2 + ( y2 - y1)^2

       =√ (7 - 1)^2 + ( 8 - 4 )^2

       =√ 6^2 + 4^2

       =√ 36 + 16

       =√ 52 = 2√13

RP  =√ (x2 - x1)^2 + ( y2 - y1)^2

       =√ (-2 - 7)^2 + ( 2 - 8 )^2

       =√ -9^2 + -6^2

       =√ 81 + 36

       =√ 117 = √9 * 13  = 3√13

PQ + QR = √13 + 2√13 = 3√13

Sum of two sides of equal to the third side

Thus P, Q and R lies on same straight line.

P,Q,R are collinear.

























































































































































Exercise 

No comments

Powered by Blogger.