Inequalities Class 9

Inequalities Class 9

Exercise :

1. In △ABC, if AB < BC < AC, name the largest and smallest angles of the triangle. 
In △ABC, AB < BC < AC

Solution. We know that the largest side has largest angle opposite to it.
                In △ABC, AB < BC < AC

Here AC is the largest side and AB is the smallest.
 ∠B is the largest angle and ∠C is the smallest.

2. In △PQR, ∠P = 80° and ∠Q = 43°. Arrange the sides in descending order of length.

Solution :
We know that sum of three angles of a triangle is 180°.

In △PQR,
∠P = 80° and ∠Q = 43°
∠R = 180° - (80° + 43°)
     =  180° - 123° = 57°

side opposite to largest angle ∠P is greatest and side opposite to smallest angle ∠Q is smallest.

Arranging the sides of △PQR in descending order, we have
                             QR > PQ > PR.

3. In △ABC, BC is produced to D so that AB = AC = CD. If ∠BAC = 72° , find the angles of 
△ABD and arrange its sides in ascending order of length.
Solution .

In △ABC, 
BC is produced to D so that AB = AC = CD.  
∠BAC = 72°

(i) Find the angles of △ABD.
(ii) Arranged the sides of △ABD at ascending order of lengths.

In △ABC, 
∠BAC = 72°
∠B + ∠C = 180° - 72° = 180°
But in △ABC,
AB = AC

∠B = ∠C = 180°/2 = 54°
∠B = 54°

 in △ACD,
AC = CD
and exterior ∠ACB = ∠CAD + ∠D
                         54°=  ∠D +  ∠D
                        54° = 2∠D

                        ∠D =  54° / 2 = 27°
                     and ∠BAD = 72° + 27° = 99°

            Now in  △BAD, we have
               ∠A = 99°,
               ∠B = 54°
               ∠B = 27°
        We know that side opposite to the greatest angle is greatest.
           BD > AD > AB
      or  AB < AD < BD.

Q 4. In △MPN, MP = 11 cm, PN = 5cm and MN = 7cm. Arrange the angles of △MPN is ascending order.

Solution :
     In a triangle, greater sides has greater angle opposite to it since MP > MN > PN
                
                 ∠N > ∠P > ∠M
            or ∠M < ∠P  < ∠N.

Q 5. Is it possible to draw a triangle whose sides are of following lengths ? Give reason.
i) 6.5 cm, 3.2 cm, 9.7 cm
ii) 4.2 cm, 6 cm, 1.7 cm
iii) 3.9 cm, 5.2 cm, 3 cm


Solution. 
     In a triangle, sum of any two sides is greater than the third side.

      i) Given sides are of lengths 6.5 cm, 3.2 cm, 9.7 cm
       Here, 6.5 + 3.2 = 9.7
so, it is not possible to draw a triangle.

      ii) Here , sum of two side of triangle
            = 4.2 + 1.7 = 5.9 > 6
so, it is not possible to draw a triangle.

     iii) Here , sum of two side of triangle
            = 3.9 + 3.0 = 6.9 > 5.2
so, it is possible to draw a triangle.

Q 6) Arrange the sides of △ABC in ascending order of their lengths.

Solution :

 In △ABC 

∠EAB = 95° and = ∠ACD = 125°
Now,
In △ABC
 ∠EAB + ∠BAC = 180°
      95° + ∠BAC = 180°
               ∠ BAC = 180° - 95° 
               ∠ BAC = 85  

similarly, 
 ∠ACD + ∠ACB = 180°
     125° + ∠ACB = 180°
                ∠ ACB = 180° - 125° 
                ∠ BAC = 55°  
But
      ∠A + ∠B + ∠C = 180°
      85° + ∠B + 55° = 180°
                ∠B + 140° = 180°
                ∠B = 180° - 140° = 40°
Now, ∠A = 80° ,  ∠B = 40° ,  ∠C = 55°
 Greater angle has greater side opposite to it.

Since , ∠A > ∠C > ∠B 
           BC > AB > AC

Q 7) In the given figure, AB is perpendicular to AD and BC. Also ∠C = 40 , ∠D = 30 . Which is longer AO or BO ?

Solution:

In the given figure,

AB ⊥ AD and AB ⊥ BC
 ∠C = 40°,  ∠D = 30°

In ADB,  ∠A = 90°,  ∠D = 30°
 ∠ABD or  ∠ABO = 180° - ( 90° + 30°)
                              = 180° -  120° 
                              = 60°  

Similarly in △ACB; we have
    
 ∠BAC = 180° - ( ∠ABC + ∠C)
                              = 180° -  (90° + 40°) 
                              = 180° - 130°
                              = 50°
  
Now ,in AOB,  ∠BAC or BAO = 50°
                   and  ∠ABD or ABO = 60°
             ∠AOB = 180° - (50° + 60° ) = 180° - 110° = 70°
                                 ∠ABO > ∠BAO
                                       AO > BO


Q 8) In △PQR, PQ = PR. QR is extended to a point S. Prove that PS > PQ.

Solution :

In △PQR, we have
PQ = PR
∠Q = ∠R

In △PRS, we have
Ext. ∠PRQ = ∠RPS + ∠PSR
or ∠PRQ  ∠S

In △PQS, we have
∠Q = ∠S  ( ∠Q = ∠R or ∠PRQ )

PS > PQ ( Greater angle has greater side opposite to it.)

Hence proved.


Q 9) In △ABC, P is any point inside it. Prove that  ∠BPC > ∠A.


Solution :

Produce BP to meet AC at Q

Ext. ∠BPC > ∠PQC --------(i)
and 

Ext. ∠BQC > ∠A   ---------(ii)
From (i) and (ii), we have
 ∠BPC ∠A   

Hence proved.

Q 10) Prove that the perimeter of the triangle is greater than the sum of its three median.

Solution : 
Given  : In ABC , 
              AD, BE, and CF are its medians.

To prove : ( AB + BC + CA ) > ( AD + BE + CF)

Proof : 
 
   Sum of any two sides of triangle is greater than twice the median bisecting the third side.
   so, 
       AB + AC > 2AD      ----------------(i)
       AC + BC > 2CF      -----------------(ii)
       BC + AB > 2BE      ----------------(iii)

       (i) + (ii) + (iii)
     
       AB + AC + AC + BC + BC + AB = 2AD + 2CF + 2BE
       2 ( AB + BC + CA) > 2 (AD + BE + CF)
            AB + BC + CA > AD + BE + CF

       Hence perimeter of a triangle is greater than the sum of its three medians. 

Q 11) In △ABC, AB < AC, PB and PC are the bisectors of ∠B and ∠C. Prove that PB < PC.

Solution . 

Given : In △ABC, AB < AC.
PB and PC are the bisectors of ∠B and ∠C. 

To prove : PB < PC

Proof : In △ABC, AB < AC.
                             ∠ACB < ∠ABC      ( Angle opposite to smaller side is less than the angle opposite to                                                                  greater side)

                               1/2∠ACB < 1/2∠ABC  
                                    PCB <  ∠PBC
                                       PB < PC
                                    Hence Proved.

Q 12) In a quadrilateral ABCD, P is an internal point. 
Proved that AP + BP + CP + DP > Semi-perimeter of quadrilateral ABCD.

Solution : 

Given : P is any point inside the quadrilateral ABCD. PA, PB, AC and PD are joined.

To prove : PA + PB + PC + PD > 1/2 ( AB + BC + CD + DA )

Proof : In △PAB

PA + PB > AB  ----------(i) ( sum of two sides of a triangle is greater than its third side)

similarly in △PBC, we have

  PB + PC > BC ------------(ii)

and in △PCD. we have

PC + PD > CD -------------(iii)

and in △PDA, we have

PD + PA > DA ------------(iv)

Adding (i), (ii), (iii) and (iv)
   
PA + PB +  PB + PC + PC + PD +  PD + PA >  AB + BC + CD + DA             

       2(PA + PB + PC + PD ) >  AB + BC + CD + DA 

         AP + BP + CP + DP  >  1/2(AB + BC + CD + DA) 


Q 13 ) The side BA and BC of ABC are produced to D and E respectively, Proved that 
          ∠DAC + ∠ECA > 180°.

Solution :

Given : Sides BC and BA are produced to D and E respectively, Forming exterior  CBD and ACE.

To prove : ∠DAC + ∠ECA > 180°

Proof : In a triangles
            Exterior angle is equal to the sum of its interior opposite angles.

                ∠CAD = ∠B + ∠C ------------------(i)
             and ∠ACE = ∠A + ∠B ------------------(ii)

             adding (i) and (ii)
            ∠CAD + ∠ACE = ∠B + ∠C + ∠A + ∠B

            ∠CAD + ∠ACE = ∠B + 180° --------------------( ∠A + ∠B + ∠C = 180°)

             ∠DAC + ∠ECA > 180°

Q 14 )  In △PQR, ∠Q = 70°, ∠QPR = 50° and PR = RS. Proved that PQ < PS.

Solution. 
Given : In △PQR, ∠Q = 70°, ∠QPR = 50° and  PR = RS
To prove : PQ < PS

Proof :

In △PQR, ∠Q = 70°, ∠P = 50°

∠PRQ = 180° - ( 50 + 70)°
           = 180° -120°
           = 60°

But in △PRS, we have 
 Ext ∠PRQ = ∠PRS + RSP
            60° = ∠PRS + RSP

          RP = RS           (given)
   
          ∠PRS = RSP = 60°/2 = 30°

        Now in △PQS, we have
                 ∠S < ∠Q
                  PQ < PS         (smaller angle has smaller side opposite to it )
               
Q 15) AD bisects ∠BAC of △ABC. Prove that AB > BD.

Solution : 

Given : In △ABC, AD is the bisector of ∠A.

To prove : AB > BD.

Proof : AD is the bisector of ∠A

             ∠BAD = ∠CAD

Now in △ACD, we have

Ext.   ∠ADB =  ∠CAD +  ∠C
          ∠ADB >  ∠CAD   
          ∠ADB >  ∠BAD     ( ∠CAD =  ∠BAD)
               AB > BD






























 
             

No comments

Powered by Blogger.